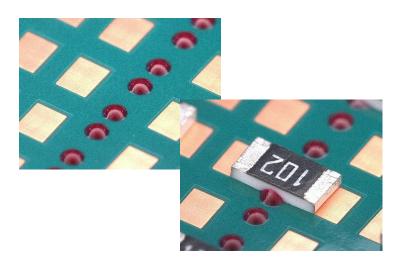


#58008E-1 First issue on April 22,2020 Revised on July 13,2020




#### **Surface Mount Adhesive**

# **Surface Mount Adhesive for Printing**

**JU-50P** 

**Product Information** 



#### Contents

**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

**Biased Humidity Test** 

**Heat Slump Property** 

Handling Guide



#### Disclaimer:

This Product Information contains product performance assessed strictly according to our own test procedures and is not the guaranteed results at end-users. Please conduct thorough process optimization before mass production application.





**Product Outline** 

Properties

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

Heat Slump Property

Handling Guide

### **Product Outline**

- Printing application adhesive to hold down surface mount devices prior to soldering
- Stable print shape during continuous use
- Fine pattern printing available
- Post curing adhesive ensures high electrical reliabilities
- Superior heat slump resistance allows it to retain its height during the curing process













## 3

#### Contents

**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

Heat Slump Property

Handling Guide

|              | Purpo                     | Printing Application                  |              |
|--------------|---------------------------|---------------------------------------|--------------|
| Product Name |                           |                                       | JU-50P       |
| Property     |                           | Condition / Note / [unit]             | Performance  |
|              | Composition               | -                                     | Epoxy resin  |
|              | Appearance/ Color         | Visual observation                    | Paste, red   |
|              | Specific Gravity          | 25°C, pycnometer                      | 1.51         |
| Before       | Viscosity                 | Malcom PCU-205,<br>25 °C 10rpm [Pa·s] | 150±25       |
| Curing       | Non-volatile Content      | 105 °C,180 minutes [%]                | >99.0        |
|              | Shelf Life                | Refrigerated (10 °C)                  | 6 months     |
|              |                           | 25 °C                                 | 1 month      |
|              | Copper Plate<br>Corrosion | 40 °C, 95%RH, after 240 hours         | No anomalies |

Above results are measured performances in a lab setting and are not guaranteed performance.







**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

Heat Slump Property

Handling Guide



### **Properties – After Curing**

|              |                                  | Printing Application                                                                                |                       |
|--------------|----------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|
|              |                                  | JU-50P                                                                                              |                       |
| Property     |                                  | Condition/ Note/ [unit]                                                                             | Performance           |
|              | Appearance/ Color                | Visual observation                                                                                  | Solid, reddish brown  |
|              | Copper Plate<br>Corrosion        | 40 °C,90%RH, after 240 hours*1                                                                      | No anomalies          |
|              | Solder Resistance                | Solder bath: SAC305, 250 °C X10sec./ 3216R*1                                                        | No anomalies          |
|              | Solvent Resistance               | Soak in solvents (IPA, acetone) for 1 hour / 3216R*1                                                | No anomalies          |
| After curing | Surface Insulation<br>Resistance | Initial (out of chamber), [ $\Omega$ ], JIS Z 3197 comb-pattern PCB, 200 $\mu$ m flat application*2 | >1.0X10 <sup>14</sup> |
|              |                                  | 85 °C, 85%RH, after 168 hours, in chamber* <sup>2</sup> [Ω]                                         | >1.0X10 <sup>9</sup>  |
|              |                                  | 85 °C, 85%RH,after 168 hours, out of chamber*2 [Ω]                                                  | >1.0X10 <sup>13</sup> |
|              | Moisture Absorption              | 1 hours, in accordance with JIS K 6911 [%]*3                                                        | <1.0                  |
|              | Grass Transition<br>Temperature  | DSC,10 °C /min, room temp. ~200°C, 2nd run [°C]                                                     | 97                    |

Above results are measured performance in a lab setting and are not guaranteed performance. Test samples are cured under following condition depending on the amount of application for the respective test.
\*1: 130 °C X90sec., \*2 130 °C X10min., \*3 130 °C X60min.







**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

Heat Slump Property

Handling Guide



## **Properties – After Curing**

|                 |                                    | Printing Application                      |                                        |  |
|-----------------|------------------------------------|-------------------------------------------|----------------------------------------|--|
| Product Name    |                                    |                                           | JU-50P                                 |  |
| Property        |                                    | Condition/ Note/ [unit]                   | Performance                            |  |
| After<br>curing | Coefficient of<br>Linear Expansion | TMA 400C/min = 50 - 2000C 4/0C **4        | α <sub>L</sub> 2.89 x 10 <sup>-5</sup> |  |
|                 |                                    | TMA,10°C/min.,-50~200°C,1/°C <sup>*</sup> | α <sub>H</sub> 1.18 x 10 <sup>-4</sup> |  |
|                 | Permittivity                       | 1MHz,23°C <sup>※4</sup>                   | 3.53                                   |  |
|                 | Loss Tangent                       | 1MHz,23°C <sup>※4</sup>                   | 0.011                                  |  |
|                 | Young's Modulus                    | JIS K 7161-1,23°C,MPa <sup>※4</sup>       | 8246                                   |  |
|                 | Poisson's Ratio                    | JIS K 7161-1,23ºC <sup>※4</sup>           | 0.336                                  |  |

Above results are measured performance in a lab setting and are not guaranteed performance. Test samples are cured under following condition depending on the amount of application for the respective test.

\*4: 60 °C X60min. >> 80 °C X30min. >> 100 °C X60min. >> 130°CX10min.







**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

Heat Slump Property

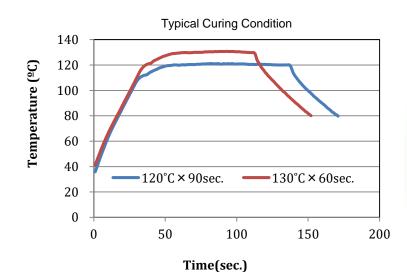
Handling Guide

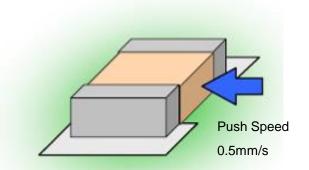
## **Curing Condition/ Strength**

< Test Method >

Print the adhesive on a glass-epoxy PCB using a 150μm thick stencil with 0.8mmΦ aperture. Mount 3216 chip resistors and cure the adhesive. Let the board cool down to room temperature and measure the adhesion strength using a bond tester.

< Test Condition and Equipment >


Test Equipment: Multi-purpose bond tester 4000Plus (Nordson DAGE)


Test Condition: Push strength test, push speed 0.5mm/ sec., room temperature

PCB: FR-4 grade glass-epoxy PCB

Heat Source: Reflow simulator, SMT SCOPE SK-5000 (Sanyo-Seiko)

Sample Size: 32 chips per curing condition











**Product Outline** 

Properties

Curing Condition/ Strength

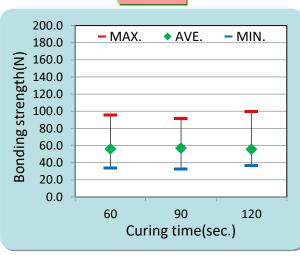
Temp.-Viscosity Curve

Viscosity Stability

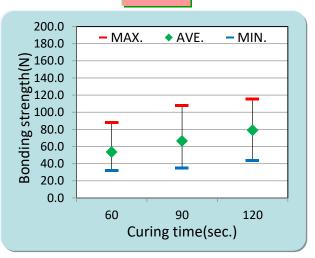
Printability

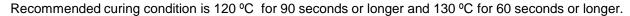
Biased Humidity Test

**Heat Slump Property** 


Handling Guide

## **Curing Condition/ Strength**


| Curing Temp. (°C)       |      | 120  |      |      | 130  |       |       |
|-------------------------|------|------|------|------|------|-------|-------|
| Curing Time (sec.)      |      | 60   | 90   | 120  | 60   | 90    | 120   |
| Bond<br>Strength<br>(N) | Ave. | 56.0 | 57.0 | 55.6 | 53.5 | 66.5  | 79.0  |
|                         | Max. | 95.7 | 91.5 | 99.8 | 88.0 | 107.9 | 115.4 |
|                         | Min. | 33.9 | 32.6 | 36.9 | 32.3 | 34.7  | 43.5  |


[Unit: N]



















**Product Outline** 

Properties

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

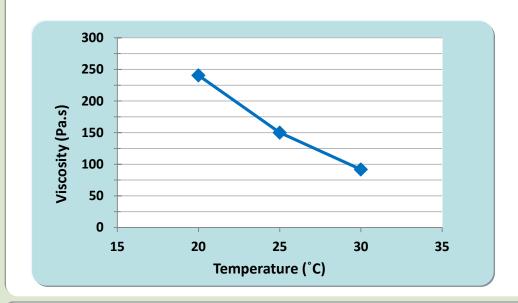
Printability

Biased Humidity Test

Heat Slump Property

Handling Guide

### **Temperature-Viscosity Curve**


<Test Method>

Measure the viscosity at each test condition.

<Condition>

Equipment: PCU-205 (Malcom)

Test Condition: 10rpm



<Viscometer Malcom PCU-205>



| Temp.<br>(°C) | Viscosity<br>(Pa.s) |
|---------------|---------------------|
| 20            | 240.5               |
| 25            | 150.0               |
| 30            | 91.7                |











**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

**Heat Slump Property** 

Handling Guide

### **Viscosity Stability**

Test condition

Print (knead) Adhesive on the sealed-up stencil continually up for 24 hours to observe viscosity variation.

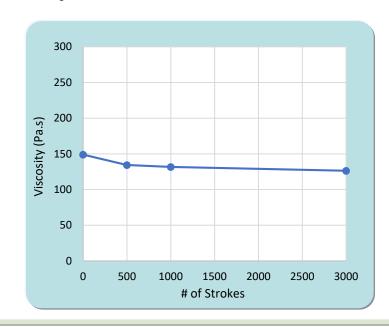
•Squeegee: Metal blade, Angle - 60°

• Viscosity : PCU-205,

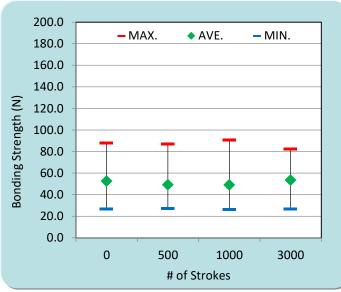
PCU-205, Malcom 10rpm, 25°C

• Squeegee speed : 30mm/sec.

Bonding Strength :


See "Cure condition / Strength"

•Print stroke : 300mm


Printing environment :

Curing :

130°C x 90sec.



21.0~25.0°C



JU-50P retains consistent rheology during continual printing and ensures stable print quality.

Also, no degradation in bonding strength shall occur due to the continual rolling on the stencil.









**Product Outline** 

Properties

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

Heat Slump Property

Handling Guide

## **Printability**

<Test Method>

According to recommended print conditions, perform print test and determine threshold value to each stencil thickness.

<Test Conditions>

Substrate: Glass epoxy FR-4

Stencil: t=150, 200, 250 μm, Laser cut

Squeegee: Metal blade, Angle- 55°

Print speed: 20mm/sec.

Print pressure: 50N

Stencil separation speed: 1mm/sec.

Atmosphere: 23.0~25.0°C (40~60%RH)











**Product Outline** 

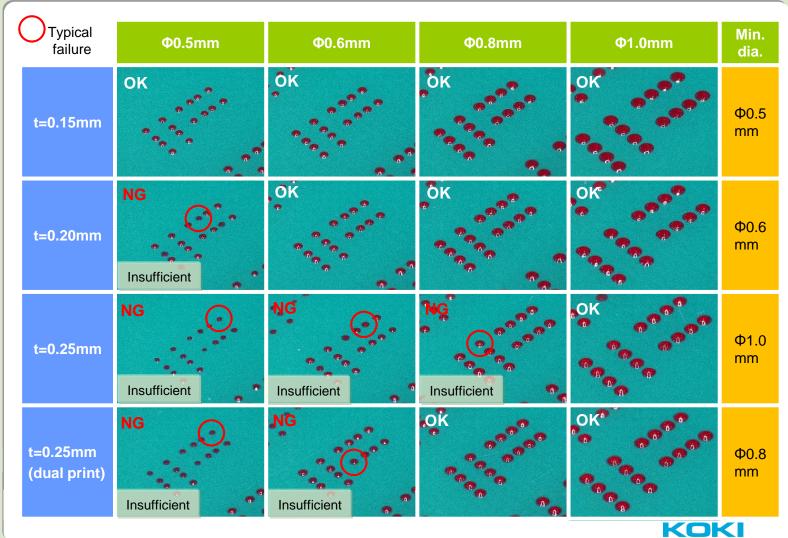
Properties

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability


Biased Humidity Test

Heat Slump Property

Handling Guide



## **Printability (Circles)**







### **Printability (Lines)**

**Contents** 

**Product Outline** 

Properties

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

Heat Slump Property

Handling Guide







**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

**Biased Humidity Test** 

**Heat Slump Property** 

Handling Guide

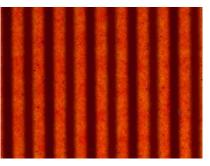
### **Biased Humidity Test**

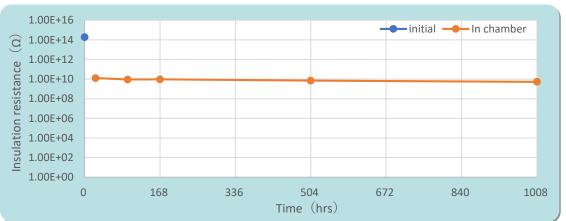
<Test Method>

Measure the surface insulation resistance in a consistent temperature/humidity chamber while applying bias voltage.

<Test Condition>

Test PCB: Comb-pattern board defined by JIS Z 3197
Application: Print with squeegee covering the comb patterns


Thickness: 200µm


Curing Condition: 130°C x 10minutes

Test duration: 1008hrs Bias voltage: 50V Measurement voltage: 100V

Chamber condition: 85 °C/85%RH

Observation between tracks of comb pattern after test





JU-50P showed good surface insulation resistance.





**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

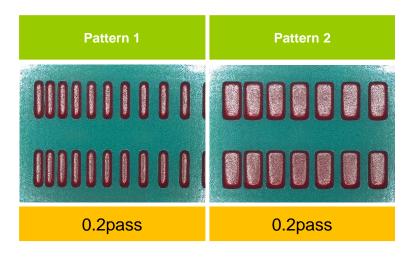
Viscosity Stability

Printability

Biased Humidity Test

**Heat Slump Property** 

Handling Guide


### **Heat Slump Property**

<Test Conditions>

Substrate: Glass epoxy FR-4 Stencil: t=200 μm, Laser cut

Apertures: See right

Curing: 130 °C x 10 min.



0.2 0.4 0.6 0.8 1.0 1.2 (mm) 0.30.5 0.7 0.9 1.1 Pattern gap

Pattern 1

Aperture size



Pattern gap

0.3 0.5 0.7 0.9 1.1 | (mm)

Pattern 2

Aperture size 3.0X1.5mm







JU-50P showed almost no heat slump during the curing process..



**Product Outline** 

Properties

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

Heat Slump Property

Handling Guide

# Handling Guide

1. Recommended Printing Conditions

(1) Squeegee

1. Kind : Flat

2. Material : metal, urethane, plastic blade

3. Pressure : Lowest

4. Squeegee speed : 10~20mm/sec.

(2) Stencil

1. Thickness : 150~250μm See "Printability"

2. Separation speed : 0.5~10mm/sec.

3. Snap-off distance : <0mm

4. Stancil Cleaning : Acetone is recommended especially for micro-pattern apertures. IPA may also be

used.

Water-based cleaners are typically not recommended due to relatively weak cleaning

power.

(3) Ambiance

Temperature : 22~27°C
 Humidity : 40~60%RH









**Product Outline** 

**Properties** 

Curing Condition/ Strength

Temp.-Viscosity Curve

Viscosity Stability

Printability

Biased Humidity Test

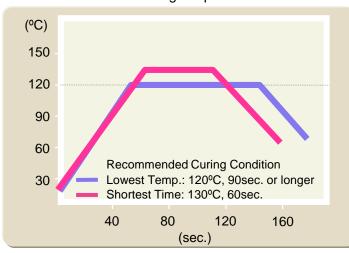
**Heat Slump Property** 

Handling Guide

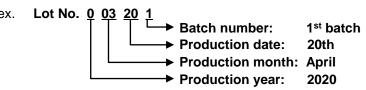


### **Handling Guide**

- 2. Recommended curing condition:
  - (1)  $120^{\circ}$ C x  $\geq 90$ sec.
  - (2) 130°C x ≥ 60sec.
- 3. Shelf life


(1) 0~10°C: 6 months from manufacturing date
(2) 25°C: 1 month from manufacturing date

- 4. Caution
  - (1) This product shall be refrigerated (0~10°C)
  - $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$


Rapidly heating the product in the container will cause the adhesive to expand and cause unstable performance.

- (3) Once the material is worked on the stencil, the leftover should be kept in a separate container.
- (4) Refer to the product's SDS for other guidance.

Recommended Curing Profile:
Lower limit of curing temperature and time



\* How to interpret lot number



